

Course Syllabus

1	Course title	Applied Geophysics			
2	Course number	0365371			
3	Credit hours	2 hours weekly			
0	Contact hours (theory, practical)	2 hours.			
4	Prerequisites/corequisites	0305271 Fundamentals of Geophysics			
5	Program title	B.Sc. Program in Environmental and Applied Geology			
6	Program code	0305			
7	Awarding institution	The University of Jordan			
8	School	School of Science			
9	Department	Geology Department			
10	Course Level	3 rd and 4 th -year B.Sc.			
11	Year of study and semester (s)	2023/2024 Fall Semester\ First Semester			
12	Other department (s) involved in teaching the course	NA			
13	Main teaching language	English			
14	Delivery method	Face to face learning \Box Blended \Box Fully online			
15	Online platforms(s)	Moodle			
15		□Others WhatsApp			
16	Issuing/Revision Date	1.10.2023			

17 Course Coordinator:

Dr Mu'ayyad Al Hseinat, Office No. Geo 211

Phone number: +962-6-5355000, Ext. 22262

Office hours: Everyday (9:30-10:30) and 13:30-14:30).

Email: <u>m.hseinat@ju.edu.jo</u>

18. Other instructors:

NA

19. Course Description:

An undergraduate course worth 2 credits delves into the exploration of applied geophysical methods, instrumentation, and field methodology. The curriculum focuses on analyzing physical parameters and geophysical anomalies to interpret subsurface geological structures. The covered geophysical methods encompass Earthquake, Reflection seismic, GPR, gravity, magnetic, electric, geothermal, and integrated geophysical studies.

QF-AQAC-03.02.01

20. Course aims and outcomes:

A- Aims: Intended learning outcomes (ILOs)

Acquaint students with a basic understanding of Seismology, i.e., Investigating Earth's structures by seismic waves, Plate movement causes Earthquakes, Seismicity of Jordan, Seismic station, Earthquake prediction and mitigation. The topics covered in this course will allow the students to better understand the main sources that caused Earthquakes.

- The objectives of this course are to introduce students to the important concepts and topics of different seismological terms and their importance, i.e., earthquake prediction, Magnitude, Intensity, Earthquake focus & epicentre, earthquake mitigation, Risk and Hazard, and Vulnerability map.

The objectives of this course are to introduce students to the important concepts and topics of seismic hazards and environmental geology. The course will also teach students about the internal and external earth processes, their hazards to life and property, and the most common methods to mitigate them. The following topics will be covered:

- ✓ Introduction to Seismology.
- ✓ Rock deformation (Stress and strain).
- ✓ Seismic waves (Body and surface waves).
- \checkmark Seismology and earthquakes.
- ✓ Magnitude Scale.
- ✓ Intensity Scale.
- \checkmark How to locate an earthquake epicentre.
- \checkmark Seismic hazard and risk.
- ✓ Vulnerability map.
- B- Students Learning Outcomes (SLOs):

Upon successful completion of this course, students will be able to:

	SLO								
SLOs	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
SLOs of the									
course									
1. Identify the	Χ	Χ							Χ
Seismicity and									
major processes									
that play a role in									
causing an									
Earthquake.									
2. Understand the	Χ	Χ			Χ				
different types of									
plate boundaries									
and their									
relationship to									
cause Earthquakes									
with special focus									

QF-AQAC-03.02.01

•
مركـز الاعتماد
وضمان الجودة

	on the focus and epicentre of an Earthquake event.									
	1									
	3. Describe the scientific method	X		X					X	
	used in Earthquake prediction.									
	4. Identify the	Χ	Χ	X				X		
	classification of									
	earth's materials									
	(rocks and									
	minerals) using									
	seismic waves.									
	5. Explain the	X	X							
	theory of plate									
	relationship with									
	earthquake									
	generation.									
	6. Understand and	X	X					Χ		
	explain the most									
	common methods									
	used to locate an									
	enicentre									
L	opiconitic.	1			1	1	1			1 1

21. Topic Outline and Schedule:

Week	Торіс	Student Learnin g Outcom e	Learning Methods (Face to Face/Blended/ Fully Online)	Platform	Synchronous / Asynchronous Lecturing	Evaluation Methods	Resources	
1	1. Introduction to Seismology	1, 2, 3	Face-to-face	E-learning	Face-to-face	Midterm exam, Presentation, and Final Exam	Textbook, Lecture Notes	
2-3	2. Rock deformation (Stress and strain)	4	Face-to-face	E-learning	Face-to-face	Midterm exam, Presentation, and Final Exam	Textbook, Lecture Notes	
3-4	Seismic waves (Body and surface waves)	5, 6	Face-to-face	E-learning	Face-to-face	Midterm exam, Presentation, and Final Exam	Textbook, Lecture Notes	
4-5	Seismology and Earthquakes	6, 8	Face-to-face	E-learning	Face-to-face	Midterm exam, Presentation, and Final Exam	Textbook, Lecture Notes	
5	Magnitude Scale	6, 8	Face-to-face	E-learning	Face-to-face	Midterm exam, Presentation, and Final Exam	Textbook, Lecture Notes	
5	Intensity Scale	7,8	Face-to-face	E-learning	Face-to-face	Midterm exam, Presentation, and Final Exam	Textbook, Lecture Notes	

ACCREDITION & GUILTY ASSUMPCE CONTR								
	6	How to locate an	7,8	Face-to-face		Face-to-face	Midterm exam,	Textbook, Lecture
		earthquake epicentre			E-learning		Presentation, and	Notes
							Final Exam	
i.	6-7	Seismic hazard and risk	7,8	Face-to-face		Face-to-face	Midterm exam,	Textbook, Lecture
					E-learning		Presentation, and	Notes
							Final Exam	
	7	Vulnerability map	7,8	Face-to-face		Face-to-face	Midterm exam,	Textbook, Lecture
					E-learning		Presentation, and	Notes
							Final Exam	
	8	Earthquake-induced	7,8	Face-to-face		Face-to-face	Midterm exam,	Textbook, Lecture
		landslides			E-learning		Presentation, and	Notes
			1				Final Exam	

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

			67 0		
Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
Midterm exam	30	1, 2, 3,4	1, 2, 3, 4	Week 4-5	Face to Face
Project one (Earthquake			1-8		Face to Face
data)	10	1-8			
Guild)					
Project two (Reflection			1-8		Face to Face
seismic data)	10	1-10	10	1-8	1
seisine dutu)	10	1 10		10	
Final Exam	50	1-10	1-8	Week 9	Face to Face
	20	1 10	10	,, con y	1 400 10 1 400

23 Course Requirements

(e.g: students should have a computer, internet connection, account on a specific software/platform...etc):

Students need a computer (or smartphone) and internet access to watch important videos.

24 Course Policies:

A- Attendance policies:

Attendance is compulsory and not to exceed (with acceptable excuse only) 15% of the total lectures, the student will automatically be deprived if he exceeds this limit. A small fraction of the mark will be allocated to attendance.

B- Absences from exams and submitting assignments on time:

It is not allowed to be absent from the exams, in case of compelling conditions, a makeup exam will be

held. The assignments should be all delivered on time.

مركـز الاعـتماد وضمان الجودة ХСНЕТИТСКА САЛИТИ

C- Health and safety procedures:

NA

D- Honesty policy regarding cheating, plagiarism, and misbehaviour:

There will be no leniency or tolerance with regard to cheating and system bypass issues, necessary actions will be taken by the department committee.

E- Grading policy:

As seen in section 22 above.

F- Available university services that support achievement in the course:

The main library, computer rooms with internet access.

25 References:

A- Required book(s), assigned reading and audio-visuals:

-Introduction to Seismology, 2nd Edition. Author(s): P. Shearer 2009. Information on this title: www.cambridge.org/9780521882101

-YouTube channel, Internet, Support material (s): presentations, homework and video clips.

26 Additional information:

Thinking and analysis

The thinking skills will be developed by encouraging students to conclude answers to different questions that the instructor intends to use during the presentation of the scientific material. The instructor intends to stimulate the student's analytical thinking side via connections with general aspects of daily life or through questions, net searching, and homework.

Name of Course Coordinator: Mu'ayyad Al Hseinat Signatu	ure: Date: 1/10/2023
Head of Curriculum Committee/Department:	Signature:
Head of Department:	Signature:
-	
Head of Curriculum Committee/Faculty:	Signature:
-	
Dean: Sigr	nature: